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This article presents some results in terms of the performance improvement of

a multi-feed array configuration over the usual single feed system when an adaptive

least-squares algorithm is applied for the sigzial reconstruction. The article presents
two novel versions of the least-squares algorithm, one of which is based on the max-

imization of the signal-to-noise ratio while the other is based on the deconvolution

of the received signal field. These algorithms have been developed for the purpose

of minimizing degradations arising from various sources, which can severely limit

the performance (gain) of a single-feed system.

I. Introduction

The development of multi-element array process-

ing techniques has many potential applications for the

Deep Space Network (DSN). These include signal recon-
struction for both X-band and Ka-band communications

[1-4] and electronic pointing to augment existing mechan-
ical pointing techniques. For all of these applications,

multi-element array processing can generally provide sig-

nificant performance improvements over single-feed an-

tenna configurations, which are predominantly used in the
DSN.

This article presents some results in terms of the per-

formance improvement provided by a linear multi-feed ar-
ray incorporating the proposed adaptive least-squares al-

gorithm over a single-feed array system, as applied to the

signal reconstruction problem. While the assumed linear

array geometry is idealized, the results of this analysis pro-

vide an indication of performance improvements that can
be achieved with adaptive, multi-element array processing.

This article describes two versions of the least-squares al-

gorithm, one of which is based on the maximization of the

signal-to-noise ratio while the other is based on deconvo-
lution of the received signal field. Here, instead of trying

to model the signal degradations in terms of deterministic

equations in evaluating the performance of the algorithm,

it is assumed that these degradations are "unknown" to

the algorithm and vary with time. The algorithm tries to

implicitly estimate these degradations in an adaptive man-
ner from the samples of the noisy received signal. On the

basis of these measurements, it computes a set of weights

for combining signals at the outputs of various feeds in or-
der to maximize the signal-to-noise ratio of the combined

signal.

For the purposes of illustrating the basic concepts in-

volved with adaptive array processing, this article presents
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the results for a 16-element linear-array feed system. The

performance of the least-squares algorithm is to a first or-

der determined by the signal-to-noise ratio of the received

signal, the number of feeds in the configuration, and the

time constants at which the received signal field is varying
with time.

In practice, it may be possible to simultaneously cor-

rect for multiple degradations arising from different sources

and having different time constants. These degradations

may be induced by wind, gravitational loading, or antenna

pointing errors. Simultaneous correction for such degrada-

tions could be achieved by adjusting the time constants of

the algorithm to track the fastest mode, in which case the
slower modes would be estimated sub-optimally. Alterna-

tively, one could track the most significant mode, thereby

essentially ignoring the faster but less significant modes.
More sophisticated techniques could also be used for sep-

aration of the modes and tracking of them separately.

!!. Array ConfiguraUon

The specific array configuration of interest in this ar-

ticle corresponds to a linear-feed array distributed across

the focal plane of an antenna. The array outputs are then

fed to a parallel receiver bank as indicated in Fig. 1. As

shown in the schematic diagram of Fig. 1, the signal out-

puts from the feed elements are amplified by r f amplifiers.

Assuming that all of the amplifiers have equal gain and

noise temperature, the output of the ith amplifier can be
written as

,.,(t)= A,C)cos( ot+ 0,(0) + n,(O (1)

where Ai(t) and Oi(t) are the signal amplitudes and phases,
we denotes the signal carrier frequency, and hi(t) is a zero-

mean white Gaussian noise of one-sided spectral density

No. The noise is also assumed to be spatially uncorrelated,

i.e., E[ni(t)nj(t)] = 0 for i ¢ j and i,j = 1,2,.., U. Under
ideal conditions and assuming a plane-wave normally inci-

dent on the antenna aperture, the amplitude of the center

feed would be equal to 2x,/_'fi (P denotes the normalized

power received by the antenna), while the remaining feeds

will have nearly zero amplitude. However, array degrada-

tions can disperse the signal amplitude (and phase) spa-

tially over N feeds. These degradations can arise due to

various sources, such as gravity, thermal fields, wind, and

atmospheric turbulence.

In the presence of such degradations, the adaptive sig-

nal processing algorithm then combines the N feed outputs

in a coherent manner so as to optimise some performance

index, such as the signal-to-noise power ratio of the com-

bined signal. This processing can occur either at r f or

can be equivalently done at the baseband. Alternatively,

in some possible imaging applications, it may be desired

to reconstruct the complete focal plane field, i.e., obtain

N output signals that are close to the outputs of the focal
plane fields in the ideal antenna case) Note that in the

more general case, more than one feed may have signifi-

cant amplitude if the source is not a point source and the

antenna is capable of resolving such a composite source.
In the limiting case, one may simply use the center out-

put of the reconstructed field and ignore the others, thus

achieving an alternative combination of the input signals.

For the purposes of signal processing, the N received
r f signals ri(t); i = 1,2, ...,N are down-converted and

quadrature sampled to obtain the sampled version of the

complex baseband envelope gi (1) of the r f signal ri (1) with

,',(0= Re{g,(t)e

gi(t) = Ai(t)e je'(O + vi(t) (2)

g,(t)= {,',(0 +

In Eq. (2) above, ÷i(t) denotes the Hilbert transform

of r_(t), and v_(t) is the complex envelope of the bandpass

noise ni(t).

III. Signal Combining Via Adaptive

Least-Squares Algorithm I

As shown in Fig. 1, the adaptive algorithm deter-

mines the time-varying complex-valued weighting coeffi-

cients wl (k),..., w_(k) on the basis of signal samples gi (j);
i = 1,2, ...,N; and j = 1,2,...,k according to some appro-

priate optimization criterion. The algorithm is adaptive

in the sense that if the signal amplitudes and phases (Ai

and Oi) remain relatively constant with time, then with

increasing value of k, the algorithm achieves increasingly

accurate estimates of these parameters, and the weighting
coefficients converge asymptotically to their theoretically

optimum values with an exponential convergence rate. On

the other hand, if these parameters are time-varying, then

I V. Vilnrotter, "Ka-Band Array Signal Processing Progress
Report," JPL Interoffice Memorandum No. 331-88.5-047 (in-
ternal document), Jet Propulsion Laboratory, Pasadena, Cal-
ifornia, November 1988.
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the algorithm tracks these variations and the weighting co-

efficients are truly time-varying (there is no tendency for

wi(k) to converge to some constant value).

Denoting by w(k) and g_(k) the weighting coefficient

vector [wl(k)w2(k)... wg(k)]' and the measurement vec-

tor [gl(k)g2(k)...gg(k)]' respectively, then the familiar

least-square optimization criterion is to select w(k) so as

to minimize the following index

k

Jk = E ]1 - wtt(k)g_(j)l 2
j----1

(3)

with respect to the weight vector w(k) for k = 1,2, .... In
the above, the superscript H denotes conjugate transpose

while I represents just the transpose of a matrix. The op-

timal solution, termed least-squares estimate of w(k), is

given by (assuming k > N)

-1_Ls(k) = g(j)g_H (j) g_(j)
j=l

(4)

If the distortion process is time-varying, then it is more

appropriate to replace the index Jk by the one obtained

by multiplying the summand in Eq. (3) by )_-J for some

0 < )_ < 1, minimization of which yields the following ex-

ponentially data-weighted least-squares estimate for w__(k).

-1

_ELs(k ) = _k-j g_(j)g_H (j) E _k-j g(j)
j=l j=l

(5)

Note that in the adaptive algorithm's present non-recursive

form, Eq. (4), it is required to invert an (N x N) matrix for

every time instance k in the computation of _(k), which
is somewhat computationally intensive. This problem can

be overcome by replacing the estimate in Eq. (5) with its

recursive form, which is obtained as follows.

Denoting by P(k) the matrix inverse in Eq. (5), then

the matrix P-l(k) has the following update.

P-l(k)=AP-l(k-1)+g(k)gn(k); k=1,2,... (6)

Application of the matrix inversion lemma [5] to Eq. (6)
yields the following desired recursion for P(k).

P(k) = _-' {P(k- 1)- [_ + g_H(k)P(k- 1)g(k)]-'

× P(k - 1)g_(k)g_'(k)P(k- 1)} (7)

One may note that the entity to be inverted in Eq. (7) is

only a scalar. Decomposing the sum in Eq. (5) as

2-1

j=l

and substituting Eq. (7) for P_(k), we obtain the following

expression for _ELs(k).

}_ezs(k) = P(k- 1) LT_=__1g_(j)_-l-_

- + - ,#)]-'

× P(k - 1)g_(k)gH(k)P(k - 1)

x/_ _k-l-Jg(j)} + P(k)9(k)
I j=l

(8)

By noting that the first term in Eq. (8) and the product
of the last two factors in the second term both are equal

to _ELs(k -- 1), Eq. (8) may be rewritten as

_--ELS(k)= _ELS(k -- 1) + P(k)g(k)

- [)_ + g_H(k)P(k- 1)g_(k)] -1

x P__(k- 1)g_(k)g_H(k)_ELs(k -- 1) (9)

Post multiplying both sides of Eq. (7) by g_(k) and with a
simple algebraic manipulation, it follows that,

[:_ + gH (k)P(k - 1)g(k)]-1P(k - 1)g(k) = P(k)g_(k) (10)

With the substitution of Eq. (10) in the last term of

Eq. (9), one obtains the recursive version of the algorithm
given below.

___ELS(k)= ___.LS(k-- 1) + P(k)g(k)

× [1--g_H(k)_ELs(k-- 1)] (11)

PCk) = )_-1 {P__(k- 1)-- [)_ + g_H(k)P(k- 1)g(k)] -1

x P_(k - 1)g_(k)g_n(k)P_(k - 1)};

k = 0, 1,2,...
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If the complex field g_(k) is a wide-sense stationary pro-
cess, a considerable simplification in computations may be

achieved by replacing P(k) with an appropriate constant
matrix in the first recursion of Eq. (11) and dropping the
second recursion.

IV. Maximization of Signal-to-Noise Ratio
via Modified Least-Squares Algorithm !

In some applications, it may be more appropriate to

maximize the signal-to-noise power ratio at the combiner
output. The noise variance at the output of the combiner is

N
equal to)--_i= x 1_,12E[lal 2] - _11_112with a S denoting the

variance of the sampled version of the complex baseband

process vi(t) in Eq. (2). Thus, as shown in the Appendix,
an effective maximization of the output signal-to-noise ra-

tio can be achieved by minimization of the index given in

Eq. (3) subject to the equality

11 112= K (12)

for some constant K, or by simply minimizing the following

index,

k

tl - wH(k)g(j)l 2 + 7(k)(ll_ll 2 - K) (13)
j=l

with respect to w and 7(k), where 7(k) is the Lagrangian

multiplier. Differentiation of Eq. (13) with respect to w__

yields the following constrained least-squares estimate for

w in terms of 7(k) as

_CLs(k ) = g_(j)gn(j) + 7(k)I Eg(J) (14)
j=l j=l

Substituting Eq. (14) into Eq. (12) yields an equation for

the unknown 7(k), which can be solved for 7(k). Substi-

tuting 7(k) back in Eq. (14) provides the constrained op-

timum solution for the weighting coefficient vector. Note,

however, that there is no close-form solution for 7(k) and,

thus, some numerical optimization techniques may need

to be applied to obtain _cLs. A simplified solution is

obtained by selecting some appropriate value for 7(k) in

Eq. (14) and then normalizing the estimate to have its

norm equal to one. In an exponentially data-weighted ver-

sion of Eq. (14), both the summands are multiplied by _k-j

where X is the exponential data-weighting coefficient. With

these modifications, Eq. (14) has the following equivalent
form.

P-l(k) = AP-I(k - 1) + 701 + g_(k)g_H(k)

¢_.(k) = _¢.(k - 1) + g_(k)

_(k) =P(k)C_.(k) (15)

 NLS --  (k)/tl (k)ll

7(k) = 7o(1 -X_)/(1-X)

Note that Eq. (15) requires a matrix inversion for each

value of k for which _(k) is desired. An approximate re-

cursive form for Eq. (15), which does not require matrix

inversion, may also be derived by applying the matrix in-

version lemma. Note that in Eq. (15), the higher value

of 70 results in the higher relative weight assigned to the

noise variance at the combiner output. The initial values
for p-1 and ¢ at k = 0 may simply be selected equal to
zero.

V. Least Squares Algorithm II

In an alternative solution, it may be assumed that

the received focal plane signal is the result of the spatial

convolution of the ideal signal (in the absence of any distor-

tion) with an unknown filter response representing various
distortions from all sources, including antenna surface de-

formations due to gravity, wind, antenna pointing errors,

turbulence, etc., i.e.,

!(k)=B__X(k)+z(k) (16)

where /3 is a Toeplitz matrix, X is the focal plane sig-

nal vector that under appropriate sampling is equal to

[0... 010... 0] in the ideal case of plane-wave with no dis-
tortion, and _v is the additive noise vector. The matrix B

includes any distortion effects, pointing errors, etc. For the

linear array case under consideration, /3 can be approxi-

mated by a circular matrix for large N or becomes identical

to a circular matrix provided the vector X(k) and the sig-

nal vector g_(k) are zero-padded. Thus, it is assumed that
B is circular. In the absence of noise, it is observed that

X = /3-tg where /3-! is also a circular matrix. How-

ever, B is unknown, and it needs to be estimated from the
noisy observations. Or, more directly,/3-1 is estimated as

follows. Rewriting the model Eq. (16) as

X(k)=F_.*i(k)+E(k); k=l,2,... (17)

where F is an unknown circular matrix to be estimated

from the given measurement g_(k); k = 1, 2 .... n. Letting
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fY = [fl, f2... fg] denote the first row of the matrix F,

and g, (k) denote the vector obtained by cyclically shifting
g(k_r! ght £ times, the following equivalent signal model is
obtained•

01
01

g (k)

g_T(k)

fl

f_

f; J

'vl(k) 1

v (k) 1

-t- . ;

i

.vN(k)

k= 1,2...

(18)

A least-squares estimate for _f can be obtained from the

signal model Eq. (18) and in its non-recursive form is given

by

[(k) = ]_1
j=l \l=O - j J' j=l

(19)

A recursive form for the estimate f(k) may also be derived

following the steps used in obtaining Eq. (11). Here re-

cursion is over both the signal sample vector g_(k) and its
circular shifts. With appropriate initial values P(O, O) and

estimate f(o,o), one has the following reeursion in terms

of the indices k and j, with k denoting time and j denoting

the cyclic shift of the received signal vector,

P(k,j) : _-l{p(k,j - 1)

--[)_ -_-g_7_l(k)P(k,j- 1)gj_l (k)]--'

×p(k,i - i - 1)};

j = 1,2,...

P(k+I,0)=P(k,N); k=l,2,...

/(k,j) = f(k,j - 1) + P(k,j)g_j_l(k)

x [(j-gn (k)f(k,j-1)]"a_j-1 --

j = 1, 2,...

f(k+l,0)=f(k,N); k=1,2,...
(20)

where

(j = 1, j = [N/2J

= O, j # LN/2J

where Lx]denotes the least integer greater than or equal
to x for any real x. The circular spatial convolution of

f* with the received signal g(k) yields the reconstructed

sqgnal vector h(k). In the case of perfect reconstruction

(deconvolution), the central element of the vector h is the
combined signal, while the remaining elements would be

zero.

Vl. Simulations

The performance of the least-squares algorithms of

the previous section is presented here in terms of simu-

lations. In the following simulations, a linear feed array

is considered. For the purposes of these simulations, the

received signal focal field is generated by spatially Fourier

transforming a simulated linear aperture plane array. The

signals in the simulated aperture are assumed to be of

equal amplitude but with completely independent phase

processes. Also, for the purposes of simulations, each of
these phase processes is assumed to be a moving aver-

age process of a specified correlation interval K and vari-

ance (steady-state). The effectiveness of the different least-
squares algorithms is measured in terms of the power ratio

(in dB) of the reconstructed (combined) signal to the total
received power (which would be concentrated in the cen-
tral feed element under ideal conditions). In addition, the

performance of the least-squares multi-element combining

algorithm is compared against traditional single-element

processing. It should be noted that for all of these sim-
ulation experiments, the noise variance at the combiner

output is matched to the noise variance at the output of

a single feed (the weighting parameter vector __ is normal-

ized to have unit norm).

In the simulations reported here, it is assumed that

the received signal is unmodulated with the signal field

amplitude equal to 1 in the aperture plane, corresponding

to a signal amplitude A0 equal to 16 at the center feed in

the focal plane (ideal case). In case of data modulation, a

decision-directed approach may be used to remove the data

modulation from the received signal. For the purposes of

simulations, the sampling period is normalized to 1 sec.

Thus, the variance a s of the sampled complex envelope of

the noise at any of the feed outputs used in the simulations

is given by

_r2 = A_/Nof, (21)
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where f, is the sampling frequency; No is the one-sided
noise spectral density; P = A_/2 is the received-signal

power; and the algorithm's performance is plotted as a

function of the carrier-to-noise spectral density ratio: CNR

= (P/No) (in dB-Hz).

In Fig. 2, the reconstructed signal amplitude and

phase estimates as a function of time measured in num-

ber of samples for the least-squares algorithm for a CNR

of 10 dB-Hz are plotted. It may be observed from Fig. 2(a)
that there is a considerable signal loss compared to the

receivcd signal amplitude equal to 16 for the ideal case.
In the simulations, the initial estimate for the parameter

vector _ is selected to be [ct a...a] with a = 1/16. As

is apparent from Fig. 2(b), the phase-estimation error of

the reconstructed signal is much smaller compared to the

rms phase error of 1 tad introduced in the simulated re-

ceivcd signal field. Figure 3 plots the corresponding results

for the modified least-squares algorithm for the same set

of signal parameters and for 70 = 100. Comparison of

Figs. 2(a) and 3(a) shows a very significant performance

improvement due to the proposed modification of the least-

squares algorithm. Results are plotted in Fig. 4 for the case
of 20 dB CNR with the parameter 70 equal to 200. For this

case, the signal amplitude and phase of the reconstructed

signal are quite close to their respective values for the ideal

case. The signal amplitude loss for this case is only 1.09 dB

relative to the ideal case, and the rms phase error (after

adaptive combining) is 0.1 tad.

A. Simulation Results for Least-Squares
Algorithm I

Figure 5(a) plots the sample estimates of the signal

power loss (compared to the ideal case) for the standard

least-squares algorithm I. The signal loss PL is simply com-

puted ,as PL = 201og10(A_,_,/16) with

I 1 M
i=1

where Ai is the reconstructed signal amplitude at the ith

sampling instance, and M is the number of sample values

selected to be equal to 200 for these simulations. Fig-
ure 5(b) plots the signal estimation rms phase error ®_m_

computed as

1 M
i=1

where Oi is the phase of the combined signal at the ith

sampling instance. It is apparent from these figures that

although the least-squares algorithm is optimal with re-

spect to the prediction error criterion, it is not satisfactory

in terms of the signal-to-noise ratio of the combined sig-

nal. For the ease of simulated phase dynamics, there is an

asymptotic signal loss of 4 dB for the high CNR (-,, 20 dB)
case.

Figure 6 plots the performance of the modified least-

squares algorithm with 70 = 100 and with the same set

of signal parameters as for the case of Fig. 5. The results

are computed for three different values of the weighting
coefficient: ,_ equal to 0.925, 0.95, and 0.975. Compari-

son of Figs. 5(a) and 6 shows a dramatic improvement in

performance due to the proposed modification. Thus, the

asymptotic signal loss for this case and with _ = 0.925 is

only 1.3 dB compared to a 4 dB loss for the standard least-

squares algorithm. Increasing the value of 70 or reducing
A may further reduce the signal loss.

It is not difficult to understand this marked perfor-

mance difference between the two algorithms. By mini-

mizing the sum of the norm square of the estimated sig-
nal error and the noise variance of the combined signal

output, the standard least-squares algorithm produces a

relatively large noise variance at the output. This is so

because at high CNR the contribution of noise to the to-
tal error is relatively much smaller than the contribution

clue to signal error (measured as a fraction of total sig-
nal), and, thus, the former is essentially ignored by the

algorithm. In the constrained least-squares algorithm, by

increasing the relative weighting attached to the noise vari-

ance, the signal-to-noise ratio at the combiner output is
increased. In fact, as is shown in the Appendix, whereas

the standard least-squares algorithm effectively maximizes

the signal plus noise power output (subject to a near-
orthogonality constraint), the constrained algorithm ac-

tually maximizes the signal-to-noise power ratio (subject

to a similar near-orthogonality constraint) at the combiner
output.

The signal loss results presented in Figs. 6(a)-(c) can

also be used to infer the performance gains provided by

the multi-element least-squares technique over center-feed

processing. In particular, we can define the array process-

ing gain as the difference (in dB) between the combining

losses of the least-squares and center-feed curves. These

data are plotted in Fig. 6(d).

As seen in Fig. 6(d), the array processing gain is a

function of both CNR and )_. Best results occur for large

CNR (> 15 dB) and low values of _ (_ = 0.925). In par-
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ticular, a maximum array gain of 3 dB (Fig. 6(a)) can be
achieved for this simulation example. For lower values of

CNR (below 0 dB), the estimation variance inherent in

the least-squares algorithm degrades the array processing

gain to such an extent that center-feed processing actually

provides better performance.

However, it must be stressed that the simulation

example considered here corresponds to a relatively

high dynamic scenario, e.g., as compared with typical

mechanically-induced array degradations. Lower dynamic

scenarios permit longer time constants for the least-squares

algorithm (_ --* 1 and/or longer sampling period), thereby

reducing the algorithm estimation variance. Thus, for low

dynamic scenarios, positive array gains can be achieved

over a wider range of CNRs (including CNR << 0 dB) by

utilizing time constants that are essentially matched to

the dynamics. For sampling periods with T different from

1 sec, the results of Fig. 6 are applicable with the CNRs

scaled by T. For instance, with T = 10 sec (typical for

slower processes), the normalized CNR of 0 dB in Fig. 6

will correspond to the actual CNR of -10 dB.

It should also be noted that for a given scenario, in-

creasing A to such an extent that the algorithm cannot

track the dynamics will lead to degraded system perfor-
mance. This can be clearly seen from Fig. 6, where it

is observed that the array gain for ), = 0.975 is approx-

imately 1 dB less than for )_ = 0.925. Finally, it can be
observed from Fig. 7 that in contrast to the array gain re-

sults, there is little difference in rms phase error between

the least-squares and center-feed outputs.

B. Simulation Results for Least-Squares Algorithm II

Figures 8(a) and (b) plot the performance of least-

squares algorithm II in terms of signal reconstruction. In
these figures, the dashed graphs depict the amplified signal

amplitude Ai at the output of various feeds, while the solid-

lined graphs represent the amplitude of the reconstructed
field, i.e., the magnitude of various components of h(k)

obtained by the circular convolution of the weight vector

](k) obtained from Eq. (19) or Eq. (20), and the received

_gnal vector g(k), for two different time indices equal to
30 and 185, respectively. As for the case of least-^squares

algorithm I, it is assumed that the weight vector f_ is nor-
malized to have its norm equal to 1. This ensures that the

noise variance at various points of the reconstructed field

is equal to the variance of the input noise field and, thus,

the comparison in terms of signal amplitudes is equiva-

lent to comparing the reconstructed signal-to-noise power

ratio. The results in Fig. 8 correspond to the same set

of signal parameters as for least-squares algorithm I and
a CNR of 10 dB. As is apparent from Fig. 8, the least-

squares algorithm II focuses most of the signal power that
is originally dispersed in 16 taps into the center tap. A

more appropriate measure of the effective focusing is ob-

tained by the signal amplitude of the center tap of the re-

constructed field, which is plotted versus time in Fig. 9(a).

In this case, only -5.2 dB of the received signal power

is scattered in the other taps for the reconstructed field.

Figure 9(b) plots the phase error of the center tap signal
and shows an rms phase error of 0.12 tad. Figure i0 plots

the corresponding results for the case of 70 = 100 and dif-

fers insignificantly from the corresponding results in Fig. 9.

Thus, the least-squares algorithm II simultaneously opti-

mizes the signal-to-noise ratio. Figure ll(a) plots the sig-
nal loss in the center feed of the reconstructed signal for

the least-squares algorithm II. As shown in the figure, with

the parameter )_ = 0.925, a loss of 1.25 dB can be achieved

for the high CNR case, which is similar to that obtained
for modified least-squares algorithm I. Figure ll(b) plots

the corresponding results for the rms phase error of the

reconstructed signal, showing an rms phase error of about

0.12 rad at CNRs higher than l0 dB.

Figure 12 plots the results when the algorithm is ap-
plied to a configuration of feeds connected to amplifiers

with different noise figures. For this example, the case
wherein one-half of the total number of amplifiers have

6.0 dB higher noise temperature than others is considered.
The CNR in the figure is still measured with reference to

the amplifier with the lower noise temperature. As may be

inferred from Fig. 12(a), the asymptotic signal loss (CNR

> 10 dB) in this case is 2.2 dB as opposed to 1.2 dB for the
case in which all of the amplifiers have low noise temper-

ature, thus resulting in only 1 dB additional degradation.
Note that if all the amplifiers were replaced by ones with

higher noise temperature, then the degradation would be
about 3 dB with reference to this lower CNR, thus result-

ing in an effective loss of 9 dB.

It may be remarked that in the above presentation, the

sampling period T has been normalized to 1 sec, but the re-
sults are also applicable to different sampling periods by a

simple normalization. As is apparent from Eq. (21), while

increasing the sampling rate by a factor K, one should cor-

respondingly reduce the actual CNR by the same factor to

obtain the algorithm's performance for this case.

VII. Conclusions

From the simulations presented in the article, it can
be observed that for the relatively fast distortion process
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with a moderate dispersion and the array geometry con-

sidered, the multi-element array configuration provides an

improvement of about 3 dB over a single-feed system. For

a slower process with possibly higher spatial dispersion,

the improvement is expected to be higher and to a certain

extent will also be influenced by a match between the ar-

ray geometry and the pattern of the received signal power

dispersion.
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Appendix

The following shows that the modified least-squares

algorithm I of Section IV achieves constrained maximiza-
tion of the signal-to-noise ratio. In the first instance, the

time averages are replaced by the ensemble averages.

Denoting by si(k) the signal component of the ith

array element output, consider the problem of minimizing

]H = E IS- w_sil 2 (A-l)
i=1

with respect to wi,i = 1,2,...N. Setting the partial
derivative of H w.r.t.wi to zero yields

)]E S- w_si s* = 0 (A-2)
i=1

Now with S =_ _wHs- and _s=_ [sx , s2, .. • , sN]', the index H

may be written as

At the optimal point, the following is obtained from

Eq. (A-2).

E [(S- S)S'] = 0 (A-4)

Adding the left-hand side of Eq. (A-4) and its complex

conjugate to Eq. (A-3) yields the following form for the

optimization index, subject to the constraint, Eq. (A-4).

-= Isl'- E[1 1 (A-5)

Thus, the algorithm that minimizes Eq. (A-I) also maxi-

mizes E [ISI2], subject to the constraint, Eq. (A-4), i.e.,

it is also a signal maximization algorithm. There may
k J

that optimize E/IS[ 21 without the con-
r _

also exist solutions
k _

straint, Eq. (A-4), but these may result in large phase error

with respect to S, the desired signal, i.e., S and Se j¢ (for

any random phase ¢) both have the same value of the index

E [I,_,8[2] but only one of these would simultaneously min-

imize the error function, Eq. (A-l). It may be remarked
L J

that there are, in general, an infinite number of solutions

that satisfy Eq. (A-4), and in effect these orthogonalize the

estimate S and the "error" (S-S). Among these solutions,

the one maximizing E [ISI 2] is selected. Equation (A-4)is

termed the orthogonality constraint.
L J

The optimization index, Eq. (A-l), does not include
the noise variance at the output of the array combiner,

which is given by cr2]lwl] 2 where a 2 is the variance of

ui(k), the noise at the input of the combiner. Thus, now

Eq. (A-l) is minimized subject to the constraint

I1 11= K (A-6)

for some constant K. Or, one can simply minimize

- + (,l ll-

where/3 is the Lagrangian multiplier. An analysis similar

to derivation of Eq. (A-5) shows that with a constraint

similar to Eq. (A-4), the index is given by

isle- - 2zK (A-S)

for some constants /3 and K. Thus, again the algorithm

maximizes E [ISI 2] subject to the constraint that the out-

put noise variance is equal to a constant Ko "2, and thus
L J

effectively maximizes the output signal-to-noise ratio.

Now from the independence of the received signal si

and noise t,i it follows that

E[lS_w. Hg_I2]=E[IS-w__Hsl2]+llwll2a 2 (A-9)

Minimization of Eq. (A-9) subject to the constraint,

Eq. (A-6), is thus identical to the minimization of Eq. (A-
1) subject to the constraint, Eq. (A-6), and thus effec-

tively maximizes the signal-to-noise ratio under the near

orthogonality constraint. Now for the large value of k,
the index k-lJk with Jk given by Eq. (3) approaches the

left-hand side of Eq. (A-9) under appropriate ergodicity as-

sumptions, and the algorithm of Section IV thus achieves

constrained optimization of the signal-to-noise power ratio.
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It may be remarked that the least-squares algorithm

in the absence of the constraint, Eq. (A-6), effectively min-

imizes the following index

i_t___[j_l_]- _L<_ (A-10)

subject to a constraint similar to Eq. (A-4). Since the last

term in Eq. (A-10) represents the noise power at the com-
biner output, it can be observed that the standard least-

squares algorithm effectively maximizes the sum of the sig-

nal plus noise power rather than the signal-to-noise power
ratio.
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